

Горно-металлургический институт имени О.А. Байконурова Кафедра «Металлургия и обогащение полезных ископаемых»

ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

7M07231 - «Автоматизация и цифровизация металлургических процессов»

Код и классификация области 7М07 – Инженерные, обрабатывающие и

образования: строительные отрасли

7М072 – Производственные и обрабатывающие Код и классификация направлений

подготовки: отрасли M117 – «Металлургическая инженерия»

Группа образовательных программ

ГОП:

Уровень по НРК: 7 7 Уровень по ОРК:

Срок обучения: 1,5 года Объем кредитов: 90

Образовательная программа «7М07231— Автоматизация и цифровизация металлургических процессов» утверждена на заседании Учёного совета КазНИТУ им. К.И. Сатпаева.

Протокол № 4 от «12» 12 2024 г.

Рассмотрена и рекомендована к утверждению на заседании Учебнометодического совета КазНИТУ им. К.И. Сатпаева.

Протокол № <u>3</u> от «<u>20</u> » <u>12</u> 2024 г.

Образовательная программа «7М07231 — Автоматизация и цифровизация металлургических процессов» разработан академическим комитетом по направлению «7М072 — Производственные и обрабатывающие отрасли»

Ф.И.О.	Учёная степень/ учёное звание	Должность	Место работы	Подпись
Председатель акаде	мического комитет	a:	•	
Барменшинова М.Б.	к.т.н., ассоциированный профессор	Заведующая кафедрой МиОПИ	КазНИТУ имени К.И. Сатпаева	The
Профессорско-преп	одавательский сост	ав:		1
Молдабаева Г.Ж.	к.т.н., ассоциированный профессор	Профессор каф.МиОПИ	КазНИТУ имени К.И. Сатпаева	Tum-
Усольцева Г. А.	К.Т.Н.	Ассоц. профессор каф.МиОПИ	КазНИТУ имени К.И. Сатпаева	\$-
Работодатели:				
Оспанов Е. А.	Д.Т.Н.	Начальник управления комплексной переработки техногенного сырья	ТОО «Корпорация Казахмыс»	Roef
Обучающиеся:				
Сағындық Ә.Н.	бакалавр техники и технологии	Магистрант 2 года обучения	TOO «KAZ Minerals»	Catual

Оглавление

- Список сокращений и обозначений
- 1. Описание образовательной программы
- 2. Цель и задачи образовательной программы
- 3. Требования к оценке результатов обучения образовательной программы
- 4. Паспорт образовательной программы
- 4.1. Общие сведения
- 4.2. Взаимосвязь достижимости формируемых результатов обучения по образовательной программе и учебных дисциплин
- 5. Учебный план образовательной программы

Список сокращений и обозначений

HAO «Казахский национальный исследовательский технический университет имени К.И. Сатпаева» — НАО КазНИТУ им К.И. Сатпаева;

ГОСО – Государственный общеобязательный стандарт образования Республики Казахстан;

МОНРК-Министерство образования и науки Республики Казахстан;

 $\mathbf{O\Pi}$ — образовательная программа;

СРО – самостоятельная работа обучающегося (студента, магистранта, докторанта);

СРОП— самостоятельная работа обучающегося с преподавателем (самостоятельная работа студента (магистранта, докторанта) с преподавателем);

РУП-рабочий учебный план;

КЭД – каталог элективных дисциплин;

ВК – вузовский компонент;

КВ-компонент по выбору;

НРК – национальная рамка квалификаций;

ОРК – отраслевая рамка квалификаций;

РО-результаты обучения;

КК-ключевые компетенции.

ЦУР – цели устойчивого развития

1. Описание образовательной программы

Образовательная программа 7M07231 - «Автоматизация и цифровизация металлургических процессов» отраслевую, приоритетную, охватывает фундаментальную, естественно-научную, общетехническую профессиональную подготовку магистров в области автоматизации цифровизации металлургических процессов, связанную внедрением, модернизацией баз данных как эксплуатацией И основы жизненным циклом продукции, применяемой в металлургических процессах.

Образовательная программа 7М07231 - «Автоматизация и цифровизация металлургических процессов» предназначена для профильной подготовки магистрантов и разработана в рамках направления «Производственные и перерабатывающие отрасли».

Подготовка квалифицированных специалистов в области металлургии, способных проектировать, разрабатывать, управлять и эксплуатировать инженерные системы и расчеты с учетом критериев устойчивого развития, экологической и социальной ответственности, а также управленческих принципов в рамках ESG и Целей устойчивого развития (ЦУР).

Виды профессиональной деятельности

Выпускники образовательной программы магистратуры могут выполнять следующие виды профессиональной деятельности: проектно-конструкторскую, производственно-технологическую, научно-исследовательскую.

Отличительная особенность программы магистратуры (1,5 года обучения), образовательная программа базовые. заключается TOM. что дает профессиональные знания, навыки и умения по металлургической переработке также о современных системах управления; о минерального сырья, а современных методах и программных средствах для исследования проектирования систем автоматизации технологических процессов; 0 современных технических средствах, применяемых при автоматизации производственных процессов.

Миссией образовательной программы магистратуры является формирование у обучающихся профессиональных компетенций, позволяющих выпускникам успешно решать производственно-технологические, организационно-управленческие, проектные задачи в области автоматизации и цифровизации металлургических процессов.

Объекты профессиональной деятельности. Объектами профессиональной деятельности выпускников являются обогатительные фабрики, предприятия черной и цветной металлургии, химического, горнохимического и машиностроительного производств, отраслевые научно-исследовательские и проектные институты, заводские лаборатории, высшие и средние профессиональные учебные заведения, государственные органы управления и организации различной организационно-правовой формы.

Предметами профессиональной деятельности являются технологические

автоматизированные системы управления, цифровые технологии и методики, контроль качества конечной продукции, автоматизация и цифровизация процессов переработки исходного сырья и производства металлопродукции повышенных потребительских свойств.

Виды экономической деятельности: автоматизация и цифровизация процессов переработки минерального сырья, получения металлов из руд и техногенного сырья.

2. Цель и задачи образовательной программы

Цель программы заключаются в овладении магистрантами базовых, основ построения, сопровождения И эксплуатации систем автоматизации металлургических процессов; изучение освоение современной методологии, технологии инструментальных И средств, связанных с реализацией, функционированием и модернизацией баз данных как основы управления жизненным циклом продукции применительно к металлургическим процессам; владение базовыми знаниями устойчивых технологий переработки минерального сырья; автоматизировать и управлять согласно концепции ESG и целей устойчивого развития с учетом принципов инклюзивного обучения, системного, экологического и критического мышления, работы в команде и коммуникации.

Образовательная программа "Автоматизация и цифровизация металлургических процессов" направлена на подготовку специалистов, владеющих современными методами автоматизации, цифровых технологий и искусственного интеллекта в металлургической промышленности. Ее задачи соотносятся с несколькими ключевыми Целями устойчивого развития (ЦУР).

Цели программы в контексте ЦУР:

- 1. ЦУР 4 Качественное образование
- Развитие цифровых компетенций студентов в сфере металлургии.
- Внедрение инновационных образовательных методик, включая симуляционные модели и виртуальные лаборатории.
 - Концепция инклюзивного образования
 - 2. ЦУР 9 Индустриализация, инновации и инфраструктура
- Разработка интеллектуальных систем управления металлургическими процессами.
- Внедрение автоматизированных производственных комплексов и цифровых двойников металлургических предприятий.
 - 3. ЦУР 12 Ответственное потребление и производство
- Оптимизация технологических процессов для сокращения отходов и энергопотребления.
- Внедрение принципов безотходного производства с использованием цифровых технологий.
 - 4. ЦУР 13 Борьба с изменением климата

- Использование цифровых технологий для мониторинга выбросов и повышения энергоэффективности.
- Автоматизация контроля за воздействием металлургического производства на окружающую среду.

Задачами образовательной программы являются:

- 1. Компетентность выпускников при автоматизации и цифровизации металлургических процессов для повышения производительности технологий и улучшению качества выпускаемой продукции.
- 2. Развитие практических навыков и компетенций для реализации инженерных решений, способствующих достижению ЦУР (7,9,12,13) в области ответственного потребления ресурсов и производства.
- 3. Компетентность выпускников в реализации разработки и осуществлении технологических процессов переработки минерального, природного и техногенного сырья;
- 4. Компетентность выпускников в осуществлении оценки инновационнотехнологических рисков при внедрении новых цифровых технологий;
- 5. Компетентность выпускников в системе цифровизации металлургических отраслей. Приобретение компетенций в управлении производством на всех этапах жизненного цикла производимой продукции;

Магистр технических наук в области автоматизации производственных процессов должен решать следующие задачи в соответствии с видами профессиональной деятельности:

- в области производственно-технологической деятельности:
- быть ведущим инженером, ведущим специалистом производственного подразделения по эксплуатации, обслуживанию, ремонту и наладке технических средств автоматизированных систем управления производственными процессами в различных отраслях промышленности, в том числе и в металлургии;
 - в области организационно-управленческой деятельности:
- быть руководителем подразделения по техническому обслуживанию и ремонту элементов, устройств автоматизированных систем управления производственных процессов в различных отраслях промышленности, в том числе и в металлургии;
 - в области экспериментально-исследовательской деятельности:
- быть ведущим специалистом по проведению экспериментальных исследований объектов автоматизации промышленных производств, в том числе и в металлургии;
 - в области научно-исследовательской деятельности:
- быть научным сотрудником научной лаборатории по исследованию и разработке современных автоматизированных систем управления производственных процессов в различных отраслях промышленности, в том числе и в металлургии;

- быть преподавателем бакалавриата по специальным дисциплинам в области автоматизации производственных процессов металлургии;

в области проектно-конструкторской деятельности:

- быть ведущим инженером или главным инженером проекта по разработке и проектированию автоматизированных систем управления производственных процессов в различных отраслях промышленности, в том числе и в металлургии.

Образовательная программа полностью разработана под задачами ЦУР (7,9,12,13) в металлургии:

- контент дисциплин содержит материал по трансформации действующих предприятий на принципы бережливого производства и щадящей металлургии;
 - изучение критически и стратегически важных металлов;
- научная проектная деятельность с учетом развития социальной компоненты.
- контент дисциплин мотивирующих будущих инженеров разрабатывать свою продукцию с концепцией сделано в Казахстане;
- контент дисциплин содержит концепцию защиты окружающей среды: снижение воздействия человеческой деятельности на окружающую среду.
 - изучение стандартов GRI.
- повышение энергоэффективности в металлургии, эффективное использование энергетических ресурсов.
- контент дисциплин рассматривающих принципы и методы улучшения климата.
- контент дисциплин содержит практические подходы по внедрению методов минимизации потребления воды на металлургических предприятиях.
 - управление отходами.
- Формирование у студентов знаний и навыков в области автоматизации и цифровых технологий:
 - Изучение промышленных систем управления (SCADA, MES, ERP).
- Разработка алгоритмов искусственного интеллекта и машинного обучения для металлургии.
 - Освоение технологий Интернета вещей (IoT) и цифровых двойников.

Развитие компетенций в области устойчивого развития металлургического производства:

- Анализ и разработка энергоэффективных технологий.
- Внедрение автоматизированных систем мониторинга выбросов и ресурсов.

Подготовка специалистов для работы в цифровой металлургии будущего:

- Практическое обучение на базе ведущих металлургических предприятий.
- Разработка и внедрение инновационных решений для повышения производительности.

Интеграция научных исследований в образовательный процесс:

- Участие студентов в проектах по цифровизации металлургии.
- Внедрение новых методов обработки данных и предиктивной аналитики.

3. Требования к оценке результатов обучения образовательной программы

Программа «Автоматизация и цифровизация металлургических процессов» обеспечивает достижение всех необходимых учебных результатов для профессиональной деятельности обучающихся.

Требования к ключевым компетенциям выпускников профильной магистратуры, должен:

1) иметь представление:

- о роли науки и образования в общественной жизни;
- о современных тенденциях в развитии научного познания;
- об актуальных методологических и философских проблемах естественных наук;
 - о профессиональной компетентности преподавателя высшей школы;
- о противоречиях и социально-экономических последствиях процессов глобализации;
- о новейших открытиях в избранной сфере деятельности, перспективах их использования для построения технических систем и устройств;
- о математическом и физическом моделировании систем в области разработки технологий и оборудования;
- о проектно-конструкторской, научно-исследовательской, изобретательской, инновационной деятельности в области автоматизации и цифровизации металлургических процессов;
- о возможностях передовых научных методов и технических средств, пользоваться ими на уровне, необходимом при исследовании горно-обогатительных и металлургических процессов и оборудования.
 - 2) знать:
- современное состояние и перспективы технического и технологического развития автоматизации и цифровизации металлургических процессов;
- цели и задачи, стоящие перед специалистом в области автоматизации и цифровизации металлургических процессов для разработки и внедрения новейших наукоемких технологии производства продукции;
- методы исследования металлургических процессов, работы оборудования;
- основные требования, предъявляемые к технической документации материалам и изделиям;
- правила и нормы охраны труда, вопросы экологической безопасности технологических процессов;

- методы синтеза систем автоматизированного управления металлургических технологических и производственных процессов;
- современные тенденции развития технических средств и систем автоматизации производственных металлургических процессов;
- стандарты, методические и нормативные материалы, сопровождающие эксплуатацию, монтаж, наладку и проектирование автоматизированных систем управления производственными процессами;

3) уметь:

- разрабатывать технологические процессы получения кондиционных концентратов из руды, а также металлов из концентратов, обработки металлов и сплавов, схемы обогатительных и металлургических процессов, обосновывать режимные параметры и показатели;
 - составлять бизнес план технологического проекта;
- разрабатывать и исследовать с применением современных программных продуктов математические модели и системы автоматизации производственных процессов;
- разрабатывать алгоритмическое и программное обеспечение для микропроцессорных систем автоматизации производственных процессов;
- обрабатывать данные с применением методик планирования, регрессионного и корреляционного анализа, методов цифровизации;
- выполнять мероприятия по организации производства в соответствии с нормативными документами;
- использовать полученные знания для оригинального развития и применения идей в контексте научных исследований;
- критически анализировать существующие концепции, теории и подходы к анализу процессов и явлений;
- интегрировать знания, полученные в рамках разных дисциплин для решения исследовательских задач в новых незнакомых условиях;
- путем интеграции знаний выносить суждения и принимать решения на основе неполной или ограниченной информации;
 - применять интерактивные методы обучения;
- проводить информационно-аналитическую и информационнобиблиографическую работу с привлечением современных информационных технологий;
- креативно мыслить и творчески подходить к решению новых проблем и ситуаций;
- свободно владеть иностранным языком на профессиональном уровне, позволяющим проводить научные исследования и осуществлять преподавание специальных дисциплин в вузах;
- обобщать результаты научно-исследовательской и аналитической работы в виде диссертации, научной статьи, отчета, аналитической записки и др.;

4) иметь навыки:

- организации работ по разработке, монтажу, наладке и эксплуатации средств и систем автоматизации производственных процессов;
- организации работ по сбору, хранению и обработке информации, применяемой в сфере профессиональной деятельности.
 - профессионального общения и межкультурной коммуникации;
- ораторского искусства, правильного и логичного оформления своих мыслей в устной и письменной форме;
- расширения и углубления знаний, необходимых для повседневной профессиональной деятельности и продолжения образования в докторантуре.
 - 5) быть компетентным:
 - в области методологии научных исследований;
 - в области научной деятельности в высших учебных заведениях;
 - в вопросах современных образовательных технологий;
- выполнении научных проектов и исследований в профессиональной области;
- в способах обеспечения постоянного обновления знаний, расширения профессиональных навыков и умений.

4. Паспорт образовательной программы

4.1. Общие сведения

№	Название поля	Примечание
1	Код и классификация области	7М07 - Инженерные, обрабатывающие и
	образования	строительные отрасли
2	1	7М072 - Производственные и обрабатывающие
	направлений подготовки	отрасли
3	Группа образовательных программ	М117 – Металлургическая инженерия
4	Наименование образовательной	7M07231 – «Автоматизация и цифровизация
	программы	металлургических процессов»
5	Краткое описание	Образовательная программа 7М07231 -
	образовательной программы	«Автоматизация и цифровизация металлургических
		процессов» охватывает отраслевую, приоритетную,
		фундаментальную, естественно-научную,
		общетехническую и профессиональную подготовку
		магистров в области автоматизации и цифровизации
		металлургических процессов, связанную с
		внедрением, эксплуатацией и модернизацией баз
		данных как основы управления жизненным циклом
		продукции, применяемой в металлургических
		процессах.
		Образовательная программа предназначена для
		профильной подготовки магистрантов и разработана в
		рамках направления «Производственные и
	и оп	перерабатывающие отрасли».
6	Цель ОП	Заключаются в овладении магистрантами базовых,

		научных основ построения, сопровождения и
		эксплуатации систем автоматизации
		металлургических процессов; изучение и освоение
		современной методологии, технологии и
		инструментальных средств, связанных с реализацией,
		функционированием и модернизацией баз данных как
		основы управления жизненным циклом продукции
		применительно к металлургическим процессам;
		владение базовыми знаниями устойчивых технологий
		переработки минерального сырья; автоматизировать и управлять согласно концепции ESG и целей
		управлять согласно концепции 1250 и целей устойчивого развития (ЦУР) с учетом принципов
		инклюзивного обучения, системного, экологического
		и критического мышления, работы в команде и
		коммуникации.
7	Вид ОП	Новая
8	Уровень по НРК	7
9	Уровень по ОРК	7
10		нет
	ОП	
11	1 *	1) иметь представление:
	образовательной программы:	- о роли науки и образования в общественной
		жизни;
		- о современных тенденциях в развитии научного
		познания;
		 о профессиональной компетентности
		преподавателя высшей школы.
		2) знать: – методологию научного познания;
		– методологию научного познания, – принципы и структуру организации научной
		деятельности;
		 цели и задачи, стоящие перед специалистом в
		области обогащения полезных ископаемых и
		металлургии для разработки и внедрения новейших
		наукоемких технологии производства продукции;
		– методы исследования обогатительных и
		металлургических процессов, работы оборудования.
		3) уметь:
		– разрабатывать энерго- и ресурсосберегающие
		технологии в области обогащения полезных
		ископаемых, металлургии и металлообработки;
		 разрабатывать мероприятия по защите
		окружающей среды для обогатительного и
		металлургического производства;
		осуществлять планирование экспериментальных
		исследований, выбирать методы исследований.
		4) иметь навыки:
		 научно-исследовательской деятельности, решения стандартных научных задач;
		стандартных научных задач,осуществления образовательной и педагогической
		деятельности по кредитной технологии обучения;
		 методики преподавания профессиональных
		процессиональных

ппоп	TITT	TITT
дисц	инн	ин

- использования современных информационных технологий в образовательном процессе;
- профессионального общения и межкультурной коммуникации
- 5) быть компетентным:
- в области методологии научных исследований;
- в области научной и научно-педагогической деятельности в высших учебных заведениях;
- в вопросах современных образовательных технологий;
- в выполнении научных проектов и исследований в профессиональной области;
- в способах обеспечения постоянного обновления знаний, расширения профессиональных навыков и умений.
- 12 Результаты обучения образовательной программы:
- РО1 Показывать коммуникативные, профессионально-технические языковые знания по иностранному, профессиональному языку, знания философских концепций естествознания, научного мировоззрения для реализации устойчивого развития (ЦУР 4).
- PO2 Владеть основными методами: интеллектуального анализа данных, дескриптивного анализа, корреляционной ирегрессионного анализа, классического вариационного исчисления, матричного описания пространственных механизмов.
- РОЗ Владеть основными методами современной теории управления: синтеза систем с заданной динамикой с применением типовых и релейных регуляторов, цифровых систем управления, систем с переменной структурой, модального управления, идентификации и адаптациии оптимального управления для создания устойчивых инженерных решений (ЦУР 9, 12).
- РО4 Уметь разрабатывать технологические процессы получения кондиционных концентратов из руды, а также металлов из концентратов, обработки металлов и сплавов, схемы обогатительных и металлургических процессов, обосновывать режимные параметры и показатели для реализации ответственного потребление ресурсов и производства (ЦУР 12).
- PO5 Владеть основными методами теориями выполнения монтажа, наладки и эксплуатации производственных систем металлургических процессов
- РО6 Владеть навыками выполнения расчётов по термодинамике И кинетике металлургических процессов, процессов обоснования выбора требований аппаратурному оформлению, прогнозирования показателей или иных

		конкретных процессов и направлений развития
		технологий переработки рудного и техногенного
		сырья
		РО7 – Интегрировать психологические
		закономерности управленческой деятельности,
		системного и экологического мышления,
		синтезировать навыки психологии управления,
		критического мышления, лидерства, работы в
		команде и коммуникации в условиях инклюзивного
		обучения.
		РО8 – Применять навыки проектного менеджмента
		для реализации устойчивого развития. Владение
		социально-психологическими, управленческими
		навыками управления проектами, навыки
		самостоятельного овладения новыми знаниями;
		навыками профессиональной аргументации при
		анализе стандартных ситуаций в сфере
		управленческой деятельности (ЦУР 4).
		РО9 – Применять современные, передовые знания о
		инновационных технологиях металлургического
		комплекса: аффинаж радиоактивных и благородных
		металлов, коррозия металлов, порошковая
		металлургия, переработка техногенного сырья,
		устойчивые и энергосберегающие пиро- и
		гидрометаллургические технологии с элементами
		цифровизации и автоматизации (ЦУР 7, 12).
		РО10 – Интегрировать автоматизированные
		технологические комплексы непрерывных
		производств и роботизированные технологические комплексы в дискретных производствах для
		комплексы в дискретных производствах для реализации развития инновационной
		инфраструктуры (ЦУР 9).
13	В Форма обучения	Очная
_	Срок обучения	1,5 года
	Объем кредитов	90
16	Языки обучения	Казахский, русский, английский
17		
	степень	программе «7М07231 - Автоматизация и
		цифровизация металлургических процессов»
18	Разработчики и авторы:	Барменшинова М.Б., Чепуштанова Т.А.

4.2. Взаимосвязь достижимости формируемых результатов обучения по образовательной программе и учебных дисциплин

No	Наименование	Краткое описание дисциплины	Кол-во										ы)
	дисциплины		кредит		PO	_			PO	PO	PO		
			ОВ	1	2	3	4	5	6	7	8	9	10
		Цикл базовых дисципл	ин (БД)			•				•			
		Вузовский компон											
1	Иностарнный язык (профессиональный)	Цель дисциплины заключается в приобретении и совершенствовании компетенций в соответствии с торговыми стандартами иностранного образования, способных конкурировать на рынке труда, т.к. через иностранный язык будущий магистр получает доступ к академическим знаниям, новым технологиям и современной информации, позволяющим использовать иностранный язык как средство общения в	2	V						V			
2	Психология управления	межкультурной, профессиональной и научной деятельности. Приобретение навыков принятия стратегических и управленческих решений с учётом психологических особенностей индивидуума и коллектива. Содержание: современная роль и содержание психологических аспектов в управленческой деятельности, методы улучшение психологической грамотности, состав и устройство управленческой деятельности, как на местном уровне, так и в зарубежном,	2							V	V		

		психологическая особенность							
3	Mayayyyy	современных управленцев.	2				V	V	
3	Менеджмент	Формирование научного представления об управлении как виде	2				V	V	
		J 1							
		1 1							
		Содержание: освоение магистрантами							
		общетеоретических положений							
		управления социально-экономическими							
		системами; овладение умениями и							
		навыками практического решения							
		управленческих проблем; изучение							
		мирового опыта менеджмента, а также							
		особенностей казахстанского							
		менеджмента; обучение решению							
		практических вопросов, связанных с							
		управлением различными сторонами							
		деятельности организаций.	_						
4	Современная теория	Содержание дисциплины включает	5		V		V	V	
	управления	изучение современных подходов к							
		анализу и синтезу систем							
		автоматического управления,							
		основанных на методологии							
		«пространства состояний». С единых							
		позиций метода пространства состояний							
		рассматриваются свойства линейных и							
		нелинейных систем и методы их							
		исследования. Приводятся основные							
		сведения о системах с переменной							
		структурой, модального управления,							
		идентификации, адаптации и							
		оптимизации в системах управления.							
		Компонент по выбо	ppy						

	1_	<u> </u>					1		I	- 1	
5	Расчеты процессов и	Приобретение магистрантами знаний по	4			V		V		V	
	аппаратов экстрактивной	основным расчетам процессов и									
	металлургии	технологий экстракционной металлургии,									
		включающих расчеты материальных и									
		балансовых потоков основных									
		технологий экстракционной металлургии									
		(медное производство, радиоактивные и									
		благородные металлы) с учетом ресурсо-									
		и энергосбережения, выбор и расчет									
		основного и вспомогательного									
		оборудования. Расчеты									
		гидрометаллургических процессов и									
		аппаратов основных современных									
		технологий выщелачивания,									
		автоклавного выщелачивания и									
		экстракционных процессов.									
6	Интеллектуальная	Целью данного курса является	5								
	собственность и научные	предоставить магистрантам знания и									
	исследования	навыки, необходимые для понимания,									
		защиты и управления интеллектуальной									
		собственностью (ИС) в контексте									
		научных исследований и инноваций.									
		Курс направлен на подготовку									
		специалистов, способных эффективно									
		работать с ИС, защищать результаты									
		научных исследований и применять их на									
		практике.									
7	Физико-химические и	Целями и задачами курса дисциплины	4		V	V				V	
	термодинамические	является приобретение магистрантами									
	процессы в металлургии	знаний о теоретических основах									
		металлургических процессов,									
		выполнении термодинамических									

		расчётов металлургических процессов, прогнозировании показателей тех или иных конкретных процессов переработки рудного и техногенного сырья, изучение физико-химических процессов при переработке различного минерального сырья: термодинамический анализ										
		систем Me-S-O, термодинамика обменных гидрометаллургических										
		реакций, термодинамика окислительных гидрометаллургических реакций,										
		построение и анализ диаграмм										
		«Потенциал-рН», термодинамика										
		автоклавных процессов.		ПП								
		Цикл профилирующих дисц Вузовский компонент и компон			347							
8	Современные	В содержании курса были рассмотрены	5	Быоор) y 	V					V	V
0	исполнительные устройства	общие вопросы теории исполнительных)			V					V	·
	систем автоматизации	устройств автоматики, изложено свойства										
	,	исполнительных устройств и их основные										
		характеристики, а также вопросы,										
		связанные с исполнительными										
		механизмами в качестве элемента										
		системы автоматизации. Основной целью										
		обучения является обучение умению правильно выбирать исполнительные										
		устройства в системах автоматики,										
		разъяснение того, что исполнительные										
		устройства являются важным элементом в										
		системах автоматики.									 	
9	Автоматизация	Содержание дисциплины включает	5		V		V					
1	технических систем	методологические основы создания		1	l	1		1	l	1		

		автоматизированной системы технологической подготовки производства (АПП). С учетом тенденций развития современного промышленного производства и новых информационных технологий его автоматизации сформулированы основные принципы построения архитектуры IT-системы.							
10	Проектирование систем автоматики	В дисциплине изучены этапы проектирования систем управления технологическими процессами. Методы подготовки проектной документации в соответствии с современными международными стандартами; методы автоматизации построения математических моделей, систем анализа и синтеза с использованием современных компьютерных технологий и автоматизации научных исследований; тенденции развития науки и техники и их влияние на автоматизацию; Суть системного подхода в проектировании современных аппаратных и программных вычислений.	5	V	V				
11	Проектный менеджмент	Цель: Получение знаний о компонентах и методах проектного управления, основанных на современных моделях и стандартах. Задачи: изучение поведенческих моделей проектно-ориентированного управления развитием бизнеса; освоение международных стандартов РМІ РМВОК, ІРМА ІСВ и	5				V	V	

		национальных стандартов РК в области
		проектного управления; анализ
		особенностей организационного
		управления развитием бизнеса через
		интеграцию стратегического, проектного
		и операционного управления.
12	Теория процессов	Цель: приобретение магистрантами 5 V V V
	металлургической	углубленных зна¬ний по теории
	инженерии	металлургических процессов: пиро-,
	•	гидро- и электрометаллургии; о
		перспективах развития теории, о
		практическом использовании
		теоретических положений. Содержание:
		систематизированные материалы об
		оксидных расплавах, строении и
		свойствах шлаков, а также о
		теоретических основах
		гидрометаллургических и
		электрометаллургических процессов,
		углубленные знания о методах анализа
		диаграмм состояния шлаковых систем,
		диаграмм «Потенциал – pH»,
		закономерностях
		электрометаллургических процессов, а
		также основные закономерности
		<u> </u>
		термодинамики, механизма и кинетики основных металлургических процессов; примеры различных процессов переработки пиро — и гидро-электрометаллургическими способами; способы и примеры применение программных материалов для

							1			
		термодинамического и кинетического								
		анализа процессов.								
13	Рациональное	Целями и задачами курса является	5		V		V		V	
	использование природного	приобретение магистрантами знаний по								
	и техногенного сырья	рациональному использованию								
		природного и техногенного сырья,								
		безотходные технологии в металлургии.								
		Изучение переработки и утилизации								
		отходов металлургического производства.								
		Способствовать формированию								
		металлургические технологии,								
		направленные на экологизацию								
		производства. Нормирование образования								
		отходов и лимитов на их размещение.								
		Изучить требования к объектам								
		размещения отходов, транспортирование								
		опасных отходов и трансграничное								
		перемещение отходов.								
14	Коррозия и защита	В курсе приводятся теоретические	5			V	V		V	
	конструкций в	закономерности и практика химической и								
	металлургической отрасли	электрохимической коррозии								
	71	применительно к металлическим								
		конструкциями с учетом: слитности								
		сечения различных конструкций,								
		обтекаемости, общей компоновки и								
		расположения элементов конструкций.								
		Описывается влияние конструктивной								
		формы элементов на коррозию.								
		Приводятся методы нанесения и монтажа								
		теплозащитных и изоляционных								
		материалов и другие методы защиты от								
		коррозии, а также примеры удачных и								

		неудачных конструктивных решений.								
15	Аппаратурное оформление	Целями преподавания дисциплины	5			\	V		V	
	процессов получения	является обучение и подготовка								
	радиоактивных металлов	специалистов для производственной								
		деятельности в области аппаратурного								
		оформления процессов получения								
		радиоактивных металлов и практических								
		навыков конструирования типовых								
		агрегатов, что соответствует								
		квалификационной характеристике по								
		специальности.								
16	Производство титана	Дисциплина охватывает технологические	5			V			V	
	губчатого и магния. Химия	процессы получения губчатого титана и								
	титана	магния, включая хлорирование,								
		восстановление и рафинирование.								
		Рассматриваются химические свойства								
		титана, его соединений, методы очистки и								
		сплавообразования. Изучаются								
		термодинамика, кинетика процессов и								
		современные технологии производства, а								
1-	-	также их применение в промышленности.								
17	Диагностика элементов	Содержание дисциплины включает	5	V					V	V
	систем автоматизации	характеристику качественных и								
		количественных показателей надежности								
		технических систем, их вероятностную и								
		статистическую оценку по результатам								
		испытаний, изучение основных методов								
		расчета надежности восстанавливаемых и								
		невосстанавливаемых систем, анализ								
		необходимости и выбор кратности								
		резервирования, рассмотрение методов и								
		моделей технической диагностики систем								

	I			1	ı	I	1		1		 1
		автоматизации. Подготовка специалистов									
		к самостоятельному решению									
		теоретических и прикладных задач,									
		связанных с оценкой, анализом,									
		диагностикой и обеспечением									
		надежности систем.									
18	Надежность системы	По дисциплине «Надежность системы	5			V		V			V
	управления и ее элементов	управления и ее элементы»									
		рассматриваются основные термины,									
		определения и определения в расчетах									
		надежности, количественные показатели									
		надежности расчетных и недопустимых									
		технических систем, основные расчеты									
		надежности сложных систем, типы тестов									
		на надежность, вопросы резервного									
		выбора и определения надежности									
		резервных систем. Для закрепления									
		теоретических материалов используются									
		стандартные задачи. А также вопросы									
		надежности систем безопасности и									
		управления.									
19	Цифровые системы	Содержание дисциплин «Цифровые	5		V	V					V
	управления	системы управления» включает в себя									
		изучение математического аппарата									
		описания цифровых систем, описания									
		цифровых систем во временной и									
		частотной форме, синтеза цифровых									
		регуляторов при переносе									
		производственных процессов. Получение									
		знаний о преимуществах построения									
		особенностях применения цифровых									
		систем управления, условий									

		T								
		выполнимости и производительности								
		цифровых систем управления и их								
		применения в технологических процессах								
	** 1	в промышленности.								
20	Новые информационные	В курсе "Новые информационные	5		V					V
	технологии	технологии" рассмотрены								
		фундаментальные проблемы и								
		математические методы теории систем,								
		характеристика этапов системного								
		анализа, процедуры системного анализа,								
		сбор данных о функционировании								
		системы, исследование информационных								
		потоков, построение моделей систем,								
		проверка адекватности моделей, анализ								
		неопределенности и чувствительности,								
		исследование ресурсных возможностей,								
		определение целей системного анализа,								
		формирование критериев, генерирование								
		альтернатив, реализация выбора и								
		принятия решений; Модели сложных								
		систем; Классификация видов								
		моделирования сложных систем,								
		принципы и подходы к построению								
		математических моделей, этапы								
		построения математической модели,								
		методы качественного оценивания								
		систем, методы количественного								
		оценивания систем, принятие решений в								
		условиях конфликта, риска,								
		неопределенностей, интеллектуальные								
		модели в управлении.								
21	Инновационные	Дисциплина охватывает широкий спектр	4			V	V		V	

	технологии комплексной	вопросов, связанных с переработкой			I					
	переработки	титаносодержащих материалов, включая								
	1 1	1 1								
	титаносодержащего сырья	руды, концентраты, а также отходы								
		производства титана. В рамках курса								
		рассматриваются ключевые процессы,								
		такие как пирометаллургия,								
		гидрометаллургия, электролиз,								
		нанотехнологии и биотехнологии.								
		Важным аспектом курса является								
		изучение инновационных технологий,								
		позволяющих решать задачи, связанные с								
		утилизацией отходов и улучшением								
		качества получаемой продукции. Также								
		особое внимание уделяется вопросам								
		устойчивого развития и охраны								
		окружающей среды в контексте								
		переработки титаносодержащих								
		материалов.								
22	Конверсия урана -	Описание дисциплина охватывает	4		V		V		V	
	производство гексафторида	технологии конверсии урана в								
	урана	гексафторид урана (UF ₆) для								
		последующего обогащения.								
		Рассматриваются химические процессы								
		фторирования урана, используемое								
		оборудование, безопасность при работе с								
		радиоактивными веществами и								
		экологические аспекты. Магистранты								
		изучают методы управления								
		радиационными рисками и особенности								
		производства UF ₆ в ядерной энергетике.								
23	Основы порошковой	Курс «основы порошковой металлургии»	5		V		V		V	
	металлургии	рассматривает основы технологии								

		получения порошковых металлов и сплавов. В составе курса особое место занимают методы изучения свойств порошковых металлов и сплавов, методы контроля качества получаемой продукции из них и применение порошков металлов и сплавов для получения из них изделий с особыми свойствами. Формирование систематизированных знаний, умений и навыков по методам получения порошковых металлов и сплавов.							
24	Технологии и оборудование в урановым производстве	Курс предусматривает изучение основ переработки уранового сырья и изучение аппаратурного оформления уранового производства. Металлургия урана. Основы технологии подземного скважинного выщелачивания (ПСВ) урановых руд. Преимущества метода ПСВ. Применение метода ПСВ. Конструкции откачных и закачных скважин, их схемы расположения и особенности эксплуатации. Зависимость экономичности переработки руды от содержания в ней урана и степени его извлечения при выщелачивании. Сравнение экономических показателей методов подземного и традиционного выщелачивания.	5		\ 	V			V

5. Учебный план образовательной программы

НЕКОММЕР ЧЕСКОЕ А КЦИОНЕР НОЕ ОБЩЕСТВО «КАЗАХСКИЙ НА ЦИОНАЛЬНЫЙ И ССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени К.И.САТПАЕВА»

«У ТВЕ РЖДЕНО» Решением Учёного совета НАО «КазНИТУ им. К.Сатпаева» Протокол № 9 от 20.02.2025

РАБОЧИЙ УЧЕБНЫЙ ПЛАН

 Учебный год
 2025-2026 (Осень, Весна)

 Группа образовательных программ
 М117 - "Металлургическая инженерия"

 Образовательная программа
 7М07231 - "Автоматизации цифровизация металлургических процессов"

 Присуждаемая академинеская степень
 Магистр техники и технологии

 Форма и срох обучения
 очная (профильное направление) - 1,5 года

Код двециплины	Наименование дисциплин	Блок	Цикл	Общий объем в академических	Всего	лек/лаб/пр Аудиторные	в часах СРО (в том	Форма контроля	заня	тий по ку семестра	М	Пререквизитность
				кредитах		часы	числе СРОП)			урс	2 курс	-
	k					-	cromy		1 сем	2 сем	3 сем	
		10000000		ых дисцип	17.77							
		M-1.	_	ь базовой под	готовь	си		1				Ī
LNG212	Иностранный язык (профессиональный)		БД, ВК	2	60	0/0/30	30	Э	2	y		
MN G726	Менецимент		БД, ВК	2	60	15/0/15	30	Э	2	8	6	ė.
HUM211	Психология управления		БД, ВК	2	60	15/0/15	30	э	2			
MET768	Расчеты процессов и аппаратов экстрактивной металлургии	1	БД, КВ	4	120	30/0/15	75	Э	4			
MET700	Физико-химические и терм одинам ические процессы в металлургии	1	БД, КВ	4	120	30/0/15	75	Э	4			
MN G781	Интеллектуальная собственность и научные исследования	2	БД, КВ	5	150	30/0/15	105	Э	5			į.
	1	M-2. M	одуль	профильной п	одгото	вки		67				673
AU T703	Современная теория управления		БД, ВК	5	150	30/0/15	105	Э	5			AUT115
	цикл	проф	илир	ующих ди	сцип	лин (пд)						
		M-1.	Модул	ь базовой под	готовь	си						
AU T708	Автоматизация технических систем	2	пд, кв	5	150	30/0/15	105	Э	5			
AUT225	Проектирование систем автоматики	2	пд, кв	5	150	30/0/15	105	Э	5			AUT166
		M-2. M	одуль	профильной п	одгото	вки		K7	100	977	· · · · · · · · · · · · · · · · · · ·	63
AU T285	Современные исполнительные устройства систем автоматизации		пд, вк	5	150	15/15/15	105	Э	5			AUT108
MET757	Теорыя процессов металлургической инженерии		пд, вк	5	150	30/0/15	105	Э	5			
MET704	Рациональное использование природного и техногенного сыры	1	пд, кв	5	150	30/15/0	105	Э		5		
MET705	Коррозия и защига жинструкций в металлургической отрасли	1	ПД, КВ	5	150	30/15/0	105	Э		5		
MN G705	Проектный менеджмент	1	ПД, КВ	5	150	30/0/15	105	Э		5		
MET202	Аппаратурное оформление процессов получения радиоактивных металлов	2	ПД, КВ	5	150	30/0/15	105	Э		5		
MEI267	Производство титана губчатого и магния. Химия титана	2	пд, кв	5	150	30/0/15	105	Э		5		
AU T299	Диагностика элементов систем автоматизации	3	ПД, КВ	5	150	30/0/15	105	Э		5		
AU T700	Надежность систем ы управления и ее элементов	3	ПД, КВ	5	150	30/0/15	105	Э		5		AUT112
AUT237	Цифровые системы управления	4	ПД, КВ	5	150	30/0/15	105	э		5		AUT102
AU 1709	Новые информационные технологии	4	ПД, КВ	5	150	30/0/15	105	Э		5		

НЕКОММЕРЧЕСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени К.И. САТПАЕВА»

MET706	Основы порошковой металиургия	5	ПД, КВ	5	150	30/0/15	105	Э		5		
MET707	Техиологии и оборудование в урановом производстве	5	ПД, КВ	5	150	30/0/15	105	Э		5		
MEI246	Инновационные технологии комплексной переработки титаносодержащего сырья	1	ПД, КВ	4	120	30/0/15	75	Э			4	
MEI247	Конверсия урана - производство гексафторида урана	1	ПД, КВ	4	120	30/0/15	75	Э			4	
	M-	3. Пра	ктико-	ор иенти ро ваг	ный м	одуль			100		20	
AA P248	Производственная практика		ПД, ВК	5				0		5		
	M-4. Э	кспери	ментали	но-исследова	тельск	ий модуль					~	
AA P249	Эксперим енгально-исследовательская работа магистранта, включая прохождение стажировки и выполнение магистерского проекта		ЭИРМ	18				0			18	
		M-5.	Модуль	итоговой ат	тестаці	ии						34
ECA213	Оформление и защита магистерского проекта		ИА	8							8	
	Итого по УНИВЕ	РСИТЕ	TV:						30	30	30	
	HIWO NO 7 HIBE	Citte								0	30	

Количество кредитов за весь период обучения

Код цикла	Циклы лисциплии	1	Кредиты		
код цикла	циклы досцинатия	Обязательный компонент	Вузовский компонент	Компонент по выбору	Beero
оод	Цикл общеобразовательных дисциплин	0	0	0	0
БД	Цикл базовых дисциплин	0	11	4	15
пд	Цикл профилирующих дисциплин	0	15	34	49
	Всего по теоретическому обучению:	0	26	.38	64
НИРМ	Научно- исследовательская работа магистранта				0
ЭИРМ	Экспериментально-исследовательская работа магистранта				18
ИА	Итоговая аттестация		19		8
	итого:				90

Решение Учебно-методического совета КазНИТУ им. К.Сатпаева. Протокол № 4 от 03.02.2025

Решение Ученого совета института. Протокол № 5 от 23.01.2025

Подписано:

Член Правления — Проректор по академ ическим Ускенбаева Р. К.

вопросам Соптасовано:

Vice Provost по академическом у развитию Кальпеева Ж. Б.

Начальник отдела - Отдел управления ОП и учебнометодической работой

Директор - Горно-металлургический институт имени О.Байконурова Рысбеков К. Б.

Заведующий кафедрой - Металлургия и обогащение полезных ископаемых Барменшинова М. Б.

Представитель академического комитета от работодателей Оспанов Е. А. ______Ознакомлен____

